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Abstract

In this paper, the design sensitivity analysis for the deflection of a beam or plate structure is first investigated with

respect to the position of a simple support using the discrete method. Both elastic and rigid supports are taken into

account, and closed-form formulae for the deflection sensitivity are developed straightforwardly. Then, on the basis of

the design sensitivity analysis, a heuristic optimization algorithm, called the evolutionary shift method, is presented for

support position optimization to minimize the maximal deflection of a structure with a fixed grid mesh scheme. In each

iterative loop, the support with the highest efficiency is shifted in priority. To facilitate the convergence of the process,

a polynomial interpolation technique is employed to evaluate the solution more accurately. The optimal solution is

achieved gradually with a minimum modification of the support layout design. Finally, three numerical examples are

presented to demonstrate the validities of the sensitivity analysis and the optimization method. Results show that

support optimization can improve the structural behavior significantly.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Design optimizations of structural topology, geometry (shape) and sizing with fixed support positions

have been researched extensively over the last decades. A bulk of publications can be found in literature for

a variety of optimization approaches. Recently, the optimization of support positions or support layout has

been a very active topic for reducing the maximal deflection or bending moment (Imam and Al-Shihri,

1996), raising the fundamental frequency of a structural system (Won and Park, 1998), increasing the
buckling load factor (Liu et al., 2000), etc. Much as known, supports are utilized to restrain the structure

and prevent it from deflecting excessively. They play an important role in the structural design, and should

be considered carefully over the structural behaviors. This is because a small amount of movement in
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support positions can influence the structural response significantly and, therefore, improve the quality of

the structural design notably.

Support position optimization may arise in almost all structural design projects, especially in building

constructions, workpiece machining, printed circuit boards, marine and aircraft structures. However,
support position optimization for decreasing structural deflections has not yet been fully investigated. It still

remains the most challenging task for researchers because the maximal deflection of a structure, as the

objective function of the problem in this paper, is highly nonlinear and nonglossy with respect to support

positions. Generally, the maximal deflection does not occur at a fixed point, i.e., it often switches its po-

sition from one point to another during the solution process, which often entails the algorithms much

greater mathematical difficulties. Hence, relatively few publications are available so far.

Imam and Al-Shihri (1996) explained the main importance for optimal design of support positions in

engineering practices. Instead of minimizing the mass by determining the optimal element sizes, they firstly
studied the support position optimization with the objective of minimizing the maximal deflection and

bending moment of a frame structure, respectively. They carried out the optimization by using the feasible

direction method. Marcelin (2001) dealt with the support position optimization to minimize the strain or

stress in the workpiece during the machining process with the genetic algorithms.

Design sensitivity analysis aims at studying the effect of design variable changes on the response of a

structural system. It plays a vital role in iterative optimization approaches, especially, in gradient-based

optimization methods, where accurate calculations of design sensitivities are desirable. With sensitivity

information, design optimization can proceed consecutively without trial and error. Therefore, the sensi-
tivity analysis has been an active research topic in the field of structural optimization. Commonly, two

approaches are utilized to evaluate sensitivities of structural responses with respect to design variables.

Imam and Al-Shihri (1996) used the finite difference approximation for design sensitivities of structural

deflections. The finite difference technique is independent of the response functions and analysis types (e.g.,

static or dynamic analysis), which makes it very popular and simple for implementation since no prior

knowledge of the response is required. However, an undeniable fact is that this technique is computa-

tionally burdensome and prohibitive time-consuming if the number of the design variables is large.

Moreover, it often has accuracy problems because no acceptable step size could be found for a general
problem (Haftka et al., 1990; Adelman and Haftka, 1993; Hsu, 1994).

The analytical method for sensitivity analysis is more efficient than the finite difference technique. It

needs the prior knowledge regarding the characteristics of the structural behavior to develop closed-form

expressions of the design sensitivity. Usually, there are two basic approaches: the differential approach and

the variational approach. The differential approach is based on the direct differentiation of structural re-

sponse by using direct or adjoint techniques (Haug et al., 1986), whereas the variational approach is based

upon the principle of virtual work by differentiating the variational state equation of the structural system.

Much as known, the calculation of the design sensitivity is often the major computational cost of an
optimization process. It becomes, therefore, increasingly important to develop higher efficient algorithms

for the sensitivity computation of deflection with regard to a support position. However, little work is

available at present.

The problem under investigation in this paper is to optimize the positions of simple or point supports to

minimize the maximal deflection of beam or plate structures. Both elastic and rigid supports are taken into

account. Supports are assumed to hold the structure at the nodes of the finite element (FE) model and act

only on the transverse displacements of the supported points. The main objective of this study is twofold.

First, the sensitivity analysis of a deflection with respect to a support position is implemented by using the
discrete method. According to the element shape functions of the FE analysis, the closed-form sensitivity

formulations are developed neatly and straightforwardly. As the structural analysis resorts most regularly

to the numerical execution with the FE method, such a derivation of the design sensitivity is consistent with

the structural numerical analysis. Second, a heuristic optimization algorithm, called the evolutionary shift
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method, is presented for minimizing the maximal absolute deflection of a structure. Based on the sensitivity

analysis, the most efficient support is identified and shifted along the elementary edges with the move step

(interval) of the elementary size. Then, the solution can be obtained gradually with a minimum modifi-

cation of the initial support layout design.
With the fixed grid mesh scheme, however, it is not always possible that the optimal support positions

are at the FE nodes exactly. To overcome this difficulty and facilitate the convergence of the optimization

process, usually, two techniques may be used to find the optimal position. An approach, which has been

extensively used in structural optimizations, is to subdivide the elements in the local region near the optimal

design. An alternative presented in this paper is to estimate the optimal support position by a polynomial

interpolation using the sensitivity information at the FE nodes, which, in turn, makes the solution insen-

sible to the FE model. Finally, three numerical examples will be given to illustrate the validity of the

formulation for the design sensitivity and the effectiveness of the proposed optimization approach. Results
show that support optimization can make a substantial improvement in the structural behavior, and

deserves careful consideration in a practical design.
2. Problem formulation

Generally, supports are utilized to hold the structure firmly and prevent it from deflecting excessively. In

support position optimization problems, the coordinates of simple support positions are referred to as

design variables. These supports will be located within a prescribed domain to minimize the maximal

absolute deflection of a structure. In addition, some supports may be linked so as to keep the structural

system symmetric and/or limit the number of design variables. Therefore, the optimization problem of
support positions can be defined mathematically as
Minimize maxðjdij; i ¼ 1; . . . ;mÞ ð1Þ
Subject to
aj 6 aj 6 �aj ðj ¼ 1; . . . ; nÞ
ad ¼ f ðajÞ

�
ð2Þ
where jdij is the absolute value of the ith nodal deflection of the structural FE model, and m is the total

number of nodal deflections of interest. aj indicates the design variable, representing the coordinate of the

jth independent support position of n simple supports, and ad is a dependent support coordinate. aj and �aj
denote the lower and upper bounds of the support positions, respectively.

Because the ‘maximal’ and ‘absolute’ values used in the objective function in Eq. (1) does not refer to the

same point deflection during the design optimization, the maximal deflection may often change its position
from one point to another. Consequently, it presents a practical barrier to an algorithm and frustrates its

usefulness in the problem since abrupt changes in the derivatives of the objective function often occur in the

solution process (Imam and Al-Shihri, 1996). In addition, more nodal deflections need to be taken into

account in Eq. (1), which implies that m should take a larger number.
3. Deflection sensitivity with respect to support position

3.1. General case

First, the first-order derivative of a specific nodal deflection with regard to the change of a simple
support position is derived. The force equilibrium equation of a loaded structure is
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½K�fug ¼ fPg ð3Þ
where ½K� is the global stiffness matrix of the structural system, which is assembled with the element stiffness

matrices. fug is the unknown nodal deflection vector and fPg is the external load vector, which is com-

monly presumed unchangeable during the optimization. As is well known, the movement of a support

would change the boundary conditions of the system and consequently, lead to the system stiffness

redistribution. Differentiating Eq. (3) with respect to the support position yields
d½K�
da

fug þ ½K� dfug
da

¼ 0 ð4Þ
Then, by simple manipulations, we obtain
dfug
da

¼ �½K��1 d½K�
da

fug ð5Þ
Premultiplying both sides of Eq. (5) by a virtual unit force vector fF igT , in which, only the term cor-

responding to the ith deflection is equal to a unit and others are zeroes. Thus, the derivative of the ith
deflection ddi

da is obtained
ddi
da

¼ �fF igT ½K��1 d½K�
da

fug ¼ �fuigT d½K�
da

fug ð6Þ
where fuig is the virtual nodal deflection vector caused by fF ig, and the symmetry of the global stiffness

matrix ½K� has been used. Once the derivative of the global stiffness matrix of the system is found, the

derivative of the ith deflection can be calculated simply. Next, two kinds of structures will be studied in

sequence as to the movement of a simple support.

3.2. Beam element with elastic support

Let us first consider a uniform beam element of length Le with an elastic simple support in its span, as

shown in Fig. 1. The element is modeled as a classical Euler–Bernoulli beam so that the shear deformation
of the element is ignored. The in-span spring support with the stiffness k is located at a and acts only in the

transverse direction. Therefore, the transverse displacement at the supported point can be approximated

with the nodal transverse displacements and slopes of the element
dðaÞ ¼ ½N1 N2 N3 N4 �ðaÞ �

v1
h1
v2
h2

8>><
>>:

9>>=
>>;

ð7Þ
where N1�4 are the shape functions of the beam element, which should be independent of the boundary

conditions. The strain energy U in the spring support can be expressed in a quadratic form as
Fig. 1. Beam element with an elastic support attachment.
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U ¼ 1

2
kd2ðaÞ ¼ k

2
½ v1 h1 v2 h2 �

N 2
1 N1N2 N1N3 N1N4

N 2
2 N2N3 N2N4

N 2
3 N3N4

Sym: N 2
4

2
664

3
775

ðaÞ

v1
h1
v2
h2

8>><
>>:

9>>=
>>;

ð8Þ
Then, the equivalent stiffness matrix of the in-span spring can be obtained
½K�S ¼ k

N 2
1 N1N2 N1N3 N1N4

N 2
2 N2N3 N2N4

N 2
3 N3N4

Sym: N 2
4

2
664

3
775

ðaÞ

ð9Þ
As we know, the support shift would not alter the element stiffness. Then, the sensitivity of the ith nodal

deflection with respect to the spring support position can be obtained according to Eq. (6)
ddi
da

¼ � uie
� �T d½K�S

da
fueg ð10Þ
where fuieg and fueg are the nodal deflection quantities of the related element caused by virtual and real

loadings, respectively. Usually, the Hermite functions are adopted for the Euler–Bernoulli beam element
(Zhu, 1998)
N1 ¼ 1� 3 a
Le

� �2

þ 2 a
Le

� �3

; N2 ¼ a� 2Le
a
Le

� �2

þ Le
a
Le

� �3

N3 ¼ 3 a
Le

� �2

� 2 a
Le

� �3

; N4 ¼ �Le
a
Le

� �2

þ Le
a
Le

� �3

8><
>: ð11Þ
Provided that the support is attached only at one of the two ends of the beam element, hence the

derivative of the equivalent stiffness matrix is achieved either
d½K�S
da

����
a¼0

¼

0 k 0 0

k 0 0 0

0 0 0 0

0 0 0 0

2
664

3
775; or

d½K�S
da

����
a¼Le

¼

0 0 0 0

0 0 0 0

0 0 0 k
0 0 k 0

2
664

3
775 ð12Þ
Substituting the above expressions back into Eq. (10) gives the sensitivity of the ith nodal deflection,

respectively,
ddi
da

����
a¼0

¼ �kðvi1 � h1 þ hi1 � v1Þ; or
ddi
da

����
a¼Le

¼ �kðvi2 � h2 þ hi2 � v2Þ ð13Þ
where v1 and h1 are, respectively, the transverse displacement and the slope at End 1 of the beam element

caused by real loading, and v2 and h2 are the corresponding items at End 2. The superscript i indicates that
the associated entries are caused by the virtual unit force.

Since the continuity of the nodal displacement and slope is always imposed between two neighboring

elements, it is recognizable that the sensitivities obtained with Eq. (13) are the same at an FE node from two
adjacent elements. Therefore, the subscripts symbolically indicating the element end in Eq. (13) will be

eliminated subsequently, and the nodal deflection quantities are just related to the point at which the

support is positioned.

For Euler–Bernoulli beam element, we can get the following relationship between the transverse

deflection and the slope (Zhu, 1998):
h ¼ v0 ¼ dv
dx

ð14Þ
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Therefore, the sensitivity of the nodal deflection with respect to the elastic support position becomes
ddi
da

¼ �k viðaÞv0ðaÞ
�

þ vi0ðaÞvðaÞ
�

ð15Þ
where vðaÞ and v0ðaÞ represent the transverse displacement and its derivative of the beam evaluated at the

supported point by the real loading, respectively. viðaÞ and vi0ðaÞ are the corresponding entries by the virtual
unit force. Eq. (15) indicates that the deflection sensitivity is proportional to the support stiffness. This

formula can be further simplified by introducing the spring force or support reaction force R
R ¼ �kvðaÞ ð16Þ

Therefore, the design sensitivity of the nodal deflection can be evaluated with
ddi
da

¼ Riv0ðaÞ þ Rvi0ðaÞ ð17Þ
where R and Ri are the support reaction forces for real and virtual loadings, respectively. Eq. (17) shows

that the design sensitivity can be calculated directly using the results available from the FE analysis under

real and virtual loadings, respectively.

Once the stiffness of a spring increases to infinite, the elastic support will become a rigid one and the

transverse deflection of the supported point reduces to zero. In this situation, Eq. (17) is still valid to

evaluate the deflection sensitivity with regard to the movement of a rigid support without any difficulties.
After acquiring, respectively, the deflections and the associated derivatives with the support locating at

the nodes of the structural FE model, it is easy to estimate the deflection value with the support within the

element span by the Hermite interpolation technique:
diðaÞ ¼ ½N1 N2 N3 N4 � �

dið0Þ
ddið0Þ
da

diðLeÞ
ddiðLeÞ

da

8>>>><
>>>>:

9>>>>=
>>>>;

ð18Þ
where N1�4 are determined by Eq. (11).

Much as in the practical problem, it is not always the case that the optimal support position is exactly at

the FE node of the structure. Regularly, the optimal position of a support is located within the element

span. In this case, Eq. (18) can be used to estimate the optimal support position as will be described in the

illustrative Example 5.1.

3.3. Plate element with elastic support

In this subsection, the preceding work is extended to a thin plate element, i.e., the classical Kirchhoff

flexural element with an elastic support attachment in its region, seeing Fig. 2. Similarly, the transverse

displacement of the supported point along the z-axis can be expressed in terms of the element nodal

displacements and slopes
wða; bÞ ¼ ½N �ða;bÞ � fuge ð19Þ
where ½N � is a row vector of shape functions of the rectangular plate element and fuge is a column vector of

element nodal degrees of freedom
½N � ¼ ½N1 Nx1 Ny1 N2 Nx2 Ny2 N3 Nx3 Ny3 N4 Nx4 Ny4 � ð20aÞ

fuge ¼ ½w1 hx1 hy1 w2 hx2 hy2 w3 hx3 hy3 w4 hx4 hy4 �T ð20bÞ



Fig. 2. Thin plate element with an elastic support attachment.
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Similar to the preceding derivations, the equivalent stiffness matrix of the elastic support is given as
½K�S ¼ k

N 2
1 N1Nx1 N1Ny1 � � � N1Nx4 N1Ny4

N 2
x1 Nx1Ny1 � � � Nx1Nx4 Nx1Ny4

N 2
y1 � � � Ny1Nx4 Ny1Ny4

..

. ..
. ..

.

Sym: N 2
y4

2
666664

3
777775

12�12

ð21Þ
The sensitivity of the nodal deflection is obtained according to Eq. (6)
odi
oa

¼ �fuieg
T o½K�S

oa
fueg ð22aÞ

odi
ob

¼ �fuieg
T o½K�S

ob
fueg ð22bÞ
Now let us take the standard shape functions of a rectangular thin plate element and utilize their

characteristics at the element corner vertices (Zhu, 1998). Assume that the support is attached at Vertex 1 of

the element, seeing Fig. 2, then one gets:
N1 ¼
oNx1

oy
¼ � oNy1

ox
¼ 1 ð23Þ

Nx1 ¼ Ny1 ¼
oN1

ox
¼ oN1

oy
¼ oNx1

ox
¼ oNy1

oy
¼ 0 ð24Þ
Other shape functions and their first derivatives are all nulls. After manipulations similar to those before,

the sensitivity of the ith deflection is given as
odi
oa

����
a¼0; b¼0

¼ k wi
1hy1

�
þ hiy1w1

�
ð25aÞ
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odi
ob

����
a¼0; b¼0

¼ �k wi
1hx1

�
þ hix1w1

�
ð25bÞ
where w1, hx1 and hy1 are, respectively, the actual transverse displacement and slopes along the x and y axes
at Vertex 1 of the plate element. wi

1, h
i
x1 and hiy1 denote the associated virtual entries.

Likewise, the design sensitivities of the support at other corner vertices of the element can be conducted.

Due to the compatibility of the nodal degrees of freedom between adjacent elements (though there exist

discontinuities for the normal slope across the common edges of adjacent elements), the resulting formulas

are the same as Eq. (25). Therefore, the subscripts indicating the element vertex in Eq. (25) will be sup-

pressed subsequently.

From the classical Kirchhoff flexural theory, there exist the following relations between the transverse

displacements and slopes
hx ¼ w;y ¼
ow
oy

; hy ¼ �w; x ¼ � ow
ox

ð26Þ
Moreover, the support reaction force R can be calculated with
R ¼ �kwða; bÞ ð27Þ

By substituting Eqs. (26) and (27) into Eq. (25), the deflection sensitivity with respect to a support

position can be obtained as:
odi
oa

¼ Riw; xða; bÞ þ wi
; xða; bÞR ð28aÞ

odi
ob

¼ Riw;yða; bÞ þ wi
;yða; bÞR ð28bÞ
where w;xða; bÞ and w;yða; bÞ indicate, respectively, the partial derivatives of wða; bÞ with respect to the re-

lated axes of the Cartesian system, evaluated at the support point (a; b) under the real loading case. wi
;xða; bÞ

and wi
;yða; bÞ correspond to the entries under virtual unit force. Similarly, as the elastic support becomes a

rigid one, Eq. (28) is still valid.

So far, it has been implied that a support shifts along the edges of the element. If the elementary edges

are not parallel to the global axes or the support moves along a specified direction, then the directional

derivative can be calculated by taking advantage of the gradient of the deflection
ddi
ds

¼ gradðdiÞ � ds ¼
odi
oa

cos aþ odi
ob

cos b ð29Þ
where fcos a; cos bg are the directional cosines of the specified direction in the global Cartesian system.
4. Optimization procedure for support positions

After acquiring the deflection sensitivity, it is able to apply the results to support position optimization

of beam or plate structures. In this paper, a heuristic optimization algorithm, based on the ideas of the ESO

method (Xie and Steven, 1997), is employed to optimize the support positions gradually for minimizing the

maximal absolute deflection of a structure. This heuristic optimization algorithm, which is better suitable

for discrete design variable problems, consists of two steps. The first step is to find the most efficient support

on the basis of design sensitivity analysis. The second step is to shift the support to the nearby node so as to
decrease the maximal absolute deflection. Supports are assumed to move along the elementary edges with

the interval of elementary size. The search direction of a support is determined according to the design
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sensitivity. Once oscillation of the maximal absolute deflection occurs between two nodes with support

movements, the interpolation technique is used to estimate the optimal position within the element, since in

this case, the minimum of the maximal absolute deflection may take place with the support locating in the

element span.
Usually, the deflection change can be written linearly in terms of the position variation:
Ddi �
odi
oaj

� Daj ð30Þ
In order to reduce a specified deflection di (>0) greater with less modification of the support positions, it

is desirable to shift the support with the maximal absolute value of the design sensitivity among all the

possibly movable supports
Max
odi
oaj

����
����; j

�
¼ 1; . . . ; n

	
ð31Þ
and the move direction of the support is determined by
signðDajÞ ¼ �sign
odi
oaj


 �
ð32Þ
where Daj is the move interval of the jth support position and signð�Þ is the sign function.

To implement the optimization procedure, the FE method is used to calculate the structural deflections

numerically under real and virtual loadings. Then, the associated displacements (or support reaction forces)
and slopes at the supported points are accessible and the design sensitivities can be computed immediately.
5. Illustrative examples

To demonstrate the validity of the developed deflection sensitivity and the proposed optimization

algorithm, three numerical examples are employed to illustrate support position optimization for mini-

mizing the maximal absolute deflection of a structure. Despite their simplicities, no theoretical solutions

exist for their position optimizations. The program is developed based on the commercial software

SAMCEF�/Asef.

5.1. Simply supported beam

This example is devised to illustrate the deflection sensitivities and to visualize the optimization solu-

tions. A uniform beam of length L ¼ 2 m is simply supported with two rigid supports. The cross-section is a

square with its side H ¼ 0:1 m. The beam is discretized evenly with 10 elements as shown in Fig. 3. Let

Young’s modulus E ¼ 2:1� 1011 Pa and material density q ¼ 7800 kg/m3. A concentrated load Pc ¼ 200
kN acts at the mid-span of the beam while two concentrated loads PE ¼ 100 kN act at its two ends,

respectively. Additionally, the structural weight is also under consideration with the gravity acceleration

g ¼ �9:81 m/s2. The two supports needs to be relocated symmetrically to minimize the maximal absolute

deflection of the beam. As to this simple structure, it can be anticipated that the maximal absolute

deflection would switch its position between the beam’s ends and its center with the movement of the

support position. Then, deflections only at those points are monitored. In order to testify the proposed

algorithm, the optimization process starts from two different initial designs with the supports at X=L ¼ 1:0
and 0.0, respectively.

Fig. 4 shows the optimization histories of the beam deflections at both its end and mid-span with the

rigid support movement. The deflection shapes of the beam with different support positions are plotted in
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Fig. 4. Evolutionary histories of beam’s deflections.

Fig. 3. Simply supported beam and its FE mesh.
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Fig. 5. Table 1 lists the displacements, design sensitivities and the maximal absolute displacement of the
beam with different support positions. It is seen clearly that when the simple supports hold up the beam at

its ends, the mid-span of the beam deflects maximally. Conversely, when the supports hold up the beam at

its mid-span, both beam’s ends deflect maximally. The structural gravity brings about the maximal

deflections unequal in those two cases. As the support moves from X=L ¼ 0:8 to 0.6, i.e., from Node 2 (10)

to Node 3 (9), the maximal absolute deflection switches its position from the beam mid-span to its ends. At
-0.020

-0.015
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-0.005

0.000

0.005

0.00 0.50 1.00 1.50 2.00

X/L=0.0 

X/L=0.6523 

X/L=1.0 

X/L=0.5 

Fig. 5. Deflection shapes of the beam for different support positions.



Table 2

Maximal absolute deflections of the beam with different support stiffnesses

Support stiffness Maximal absolute deflection (mm)

100 EI/L3 (2.1875· 107 N/m) 10.249

200 EI/L3 (4.375· 107 N/m) 5.661

Rigid 1.072

Table 1

Beam deflections (m) and design sensitivities with different support positions

Support position X=L Beam deflections d (·10�3) Support sensitivities (·10�3)

At end At mid-span Maxjdj At end At mid-span

1.0 0.0 )19.139 19.139 28.718 86.082a

0.8 1.690 )6.130 6.130 )9.146 45.924a

0.6 )2.588 )0.006 2.588 )30.953a 17.233

0.4 )9.621 1.528 9.621 )36.700a 0.013

0.2 )16.197 0.765 16.197 )26.384a )5.733
0.0 )19.103 0.0 19.103

a Sensitivity of the maximal deflection.
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the same time, the sensitivity of the maximal absolute displacement alters its sign, seeing Table 1. With the
relevant displacements and the sensitivities, one can predict the switching point a� by imposing the equality

condition:
d1ða�Þ ¼ d6ða�Þ

That is, with the Hermite interpolation technique within the element, one can get the following equation
½N1 N2 N3 N4 �ða�Þ

d1jNode 2
dd1
da

��
Node 2

d1jNode 3
dd1
da

��
Node 3

8>>><
>>>:

9>>>=
>>>;

¼ ½N1 N2 N3 N4 �ða�Þ

d6jNode 2
dd6
da

��
Node 2

d6jNode 3
dd6
da

��
Node 3

8>>><
>>>:

9>>>=
>>>;
This is a cubic equation about a� and can be solved simply with Cardano’s formulae. At last, the optimal
support position is achieved with X=L ¼ 0:6523. The minimum of the maximal absolute deflection is 1.072

mm, only 5.6% of that with the supports locating at the beam’s ends. Substantial reduction of the maximal

deflection has been achieved with the optimal design of support positions.

Furthermore, it is found that the resulting solution is also valid for elastic supports with different

stiffnesses in this numerical example. This is because the reaction forces of the supports and the flexural

deformation of the beam are the same for all cases of supports of different stiffnesses. So are the design

sensitivities. The minimum values of the maximal absolute deflections of the beam with different support

stiffnesses are listed in Table 2 for comparison. The discrepancies are, in fact, produced by the deformations
of the elastic supports themselves.

5.2. Frame structure

A frame structure, loaded by four concentrated forces together with its self-weight, is shown in Fig. 6.

The original deflection of the frame without the lateral supports attachment takes the maximal value,

jdmaxj ¼ 211:63 mm, at its free tip. Now a pair of rigid supports is attached laterally at the nodes on the

lower chord to reduce its maximal deflection. The interval of the two simple supports remains 1 m apart
fixedly. Hence, a is the exclusive independent coordinate of the supports.



Fig. 6. Frame structure with the applied loads and the additional lateral supports.
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Fig. 8. Comparison of the deformation shapes of the frame structure.
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The members of the frame structure are separated into two groups. The cross section of all the diagonal
members is full circle with diameter D ¼ 20 mm. Other members are of tubular cross section with the outer

diameter Do ¼ 80 mm and inner diameter Di ¼ 60 mm. Young’s modulus is E ¼ 2:1� 1011 Pa and material

density q ¼ 7800 kg/m3. The optimization process starts from the initial design at a ¼ 0. Deflections of all

nodes on the upper chord are under control.

The variations of the maximal deflection of the frame and the design sensitivity are shown in Fig. 7,

respectively. The sensitivity is positive until a ¼ 6 m. Afterwards, when a ¼ 7 m, i.e., the supports hold the

frame at C and C0, the sensitivity becomes negative. Meanwhile, the maximal absolute deflection, occurring

at point B, reaches minimum jdmaxj ¼ 5:37 mm, only 2.54% of that without the additional supports. Fig. 8
shows the final deformation of the frame compared with the original. Apparently, the frame deforms more

evenly with a pair of the supports locating at the optimal position.
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5.3. Simply supported rectangular plate

A rectangular plate, shown in Fig. 9, is loaded by a concentrated force of 2 kN at its central point C and

a uniformly distributed force of 2 kN/m2 along the transverse direction. The plate is symmetrically sup-
ported with four elastic supports on its diagonals. The thickness of the plate is 1 cm uniformly. The plate is

discretized regularly with a mesh of 10 · 10 quadrilateral elements. Young’s modulus is E ¼ 73:1 GPa and

Poisson ratio m ¼ 0:3. The four elastic supports, with stiffness 106 N/m, will move along the diagonals of the

plate to minimize the plate deflection. The optimization process starts from the initial design at a=L ¼ 0.

Fig. 10 shows the variation of the maximal deflection of the plate versus the support positions. The

numbers in the parentheses are the design sensitivities of the maximal deflection. When supports hold the
Fig. 9. Rectangular plate: (a) with applied forces; (b) with four simple supports.
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plate at its corners, i.e., a=L ¼ 0, the maximal absolute deflection is 0.1276 m, occurring at the mid-span of

the long edge. When the supports move from a=L ¼ 0:2 to 0.3, the design sensitivity changes its value from

0.105 to )0.101. Thus, it is known that the optimal position is in this span and can be interpolated with the

obtained results. At the optimal design of the support positions a=L ¼ 0:2791, the maximal absolute
deflection is 4.332 · 10�3 m, only 3.4% of the initial value, occurring at the corners and the center of the

plate. Obviously, the optimal design of support positions has reduced the plate deflection significantly.
6. Conclusions

Structural optimization often requires the evaluation of design sensitivities. In this paper, the closed-

form expressions for the deflection sensitivity of a beam or plate structure with respect to a support position

are first developed by the discrete method. Both elastic and rigid supports are taken into account. Fur-

thermore, based on the sensitivity analysis, a heuristic optimization algorithm, called the evolutionary shift

method, is presented for support position optimization with the objective of minimizing the maximal

deflection. To facilitate the convergence of the process, a polynomial interpolation technique is used to

evaluate the solution more accurately. Three numerical examples are utilized to demonstrate the validity of
the sensitivity formulation and the effectiveness of the proposed optimization method.

In practical problems, support positions are of great importance to provide additional rigidity and

improve the structural properties. Results of the examples show that the optimal design of support posi-

tions can reduce the structural deflection substantially without additional material.
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