Available online at www.sciencedirect.com
INTERNATIONAL JOURNAL OF

sc.ENCE@D.nECT® SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

ELSEVIER International Journal of Solids and Structures 41 (2004) 7445-7458

Optimization of support positions to minimize
the maximal deflection of structures

*
D. Wang
Department of Aeronautical Structural Engineering, Northwestern Polytechnical University,
P.O. Box 118%, Xi’an, Shaanxi 710072, PR China

Received 4 August 2003; received in revised form 16 May 2004
Available online 4 August 2004

Abstract

In this paper, the design sensitivity analysis for the deflection of a beam or plate structure is first investigated with
respect to the position of a simple support using the discrete method. Both elastic and rigid supports are taken into
account, and closed-form formulae for the deflection sensitivity are developed straightforwardly. Then, on the basis of
the design sensitivity analysis, a heuristic optimization algorithm, called the evolutionary shift method, is presented for
support position optimization to minimize the maximal deflection of a structure with a fixed grid mesh scheme. In each
iterative loop, the support with the highest efficiency is shifted in priority. To facilitate the convergence of the process,
a polynomial interpolation technique is employed to evaluate the solution more accurately. The optimal solution is
achieved gradually with a minimum modification of the support layout design. Finally, three numerical examples are
presented to demonstrate the validities of the sensitivity analysis and the optimization method. Results show that
support optimization can improve the structural behavior significantly.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Design optimizations of structural topology, geometry (shape) and sizing with fixed support positions
have been researched extensively over the last decades. A bulk of publications can be found in literature for
a variety of optimization approaches. Recently, the optimization of support positions or support layout has
been a very active topic for reducing the maximal deflection or bending moment (Imam and Al-Shihri,
1996), raising the fundamental frequency of a structural system (Won and Park, 1998), increasing the
buckling load factor (Liu et al., 2000), etc. Much as known, supports are utilized to restrain the structure
and prevent it from deflecting excessively. They play an important role in the structural design, and should
be considered carefully over the structural behaviors. This is because a small amount of movement in
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support positions can influence the structural response significantly and, therefore, improve the quality of
the structural design notably.

Support position optimization may arise in almost all structural design projects, especially in building
constructions, workpiece machining, printed circuit boards, marine and aircraft structures. However,
support position optimization for decreasing structural deflections has not yet been fully investigated. It still
remains the most challenging task for researchers because the maximal deflection of a structure, as the
objective function of the problem in this paper, is highly nonlinear and nonglossy with respect to support
positions. Generally, the maximal deflection does not occur at a fixed point, i.e., it often switches its po-
sition from one point to another during the solution process, which often entails the algorithms much
greater mathematical difficulties. Hence, relatively few publications are available so far.

Imam and Al-Shihri (1996) explained the main importance for optimal design of support positions in
engineering practices. Instead of minimizing the mass by determining the optimal element sizes, they firstly
studied the support position optimization with the objective of minimizing the maximal deflection and
bending moment of a frame structure, respectively. They carried out the optimization by using the feasible
direction method. Marcelin (2001) dealt with the support position optimization to minimize the strain or
stress in the workpiece during the machining process with the genetic algorithms.

Design sensitivity analysis aims at studying the effect of design variable changes on the response of a
structural system. It plays a vital role in iterative optimization approaches, especially, in gradient-based
optimization methods, where accurate calculations of design sensitivities are desirable. With sensitivity
information, design optimization can proceed consecutively without trial and error. Therefore, the sensi-
tivity analysis has been an active research topic in the field of structural optimization. Commonly, two
approaches are utilized to evaluate sensitivities of structural responses with respect to design variables.
Imam and Al-Shihri (1996) used the finite difference approximation for design sensitivities of structural
deflections. The finite difference technique is independent of the response functions and analysis types (e.g.,
static or dynamic analysis), which makes it very popular and simple for implementation since no prior
knowledge of the response is required. However, an undeniable fact is that this technique is computa-
tionally burdensome and prohibitive time-consuming if the number of the design variables is large.
Moreover, it often has accuracy problems because no acceptable step size could be found for a general
problem (Haftka et al., 1990; Adelman and Haftka, 1993; Hsu, 1994).

The analytical method for sensitivity analysis is more efficient than the finite difference technique. It
needs the prior knowledge regarding the characteristics of the structural behavior to develop closed-form
expressions of the design sensitivity. Usually, there are two basic approaches: the differential approach and
the variational approach. The differential approach is based on the direct differentiation of structural re-
sponse by using direct or adjoint techniques (Haug et al., 1986), whereas the variational approach is based
upon the principle of virtual work by differentiating the variational state equation of the structural system.
Much as known, the calculation of the design sensitivity is often the major computational cost of an
optimization process. It becomes, therefore, increasingly important to develop higher efficient algorithms
for the sensitivity computation of deflection with regard to a support position. However, little work is
available at present.

The problem under investigation in this paper is to optimize the positions of simple or point supports to
minimize the maximal deflection of beam or plate structures. Both elastic and rigid supports are taken into
account. Supports are assumed to hold the structure at the nodes of the finite element (FE) model and act
only on the transverse displacements of the supported points. The main objective of this study is twofold.
First, the sensitivity analysis of a deflection with respect to a support position is implemented by using the
discrete method. According to the element shape functions of the FE analysis, the closed-form sensitivity
formulations are developed neatly and straightforwardly. As the structural analysis resorts most regularly
to the numerical execution with the FE method, such a derivation of the design sensitivity is consistent with
the structural numerical analysis. Second, a heuristic optimization algorithm, called the evolutionary shift
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method, is presented for minimizing the maximal absolute deflection of a structure. Based on the sensitivity
analysis, the most efficient support is identified and shifted along the elementary edges with the move step
(interval) of the elementary size. Then, the solution can be obtained gradually with a minimum modifi-
cation of the initial support layout design.

With the fixed grid mesh scheme, however, it is not always possible that the optimal support positions
are at the FE nodes exactly. To overcome this difficulty and facilitate the convergence of the optimization
process, usually, two techniques may be used to find the optimal position. An approach, which has been
extensively used in structural optimizations, is to subdivide the elements in the local region near the optimal
design. An alternative presented in this paper is to estimate the optimal support position by a polynomial
interpolation using the sensitivity information at the FE nodes, which, in turn, makes the solution insen-
sible to the FE model. Finally, three numerical examples will be given to illustrate the validity of the
formulation for the design sensitivity and the effectiveness of the proposed optimization approach. Results
show that support optimization can make a substantial improvement in the structural behavior, and
deserves careful consideration in a practical design.

2. Problem formulation

Generally, supports are utilized to hold the structure firmly and prevent it from deflecting excessively. In
support position optimization problems, the coordinates of simple support positions are referred to as
design variables. These supports will be located within a prescribed domain to minimize the maximal
absolute deflection of a structure. In addition, some supports may be linked so as to keep the structural
system symmetric and/or limit the number of design variables. Therefore, the optimization problem of
support positions can be defined mathematically as

Minimize max(|6;|, i=1,...,m) (1)
. a;<a;<a; (j=1,...,n)

Subject to 4 GSUNY L 2
e to {0258 2

where |0;| is the absolute value of the ith nodal deflection of the structural FE model, and m is the total
number of nodal deflections of interest. a; indicates the design variable, representing the coordinate of the
Jth independent support position of n simple supports, and aq is a dependent support coordinate. a; and a,
denote the lower and upper bounds of the support positions, respectively.

Because the ‘maximal’ and ‘absolute’ values used in the objective function in Eq. (1) does not refer to the
same point deflection during the design optimization, the maximal deflection may often change its position
from one point to another. Consequently, it presents a practical barrier to an algorithm and frustrates its
usefulness in the problem since abrupt changes in the derivatives of the objective function often occur in the
solution process (Imam and Al-Shihri, 1996). In addition, more nodal deflections need to be taken into
account in Eq. (1), which implies that m should take a larger number.

3. Deflection sensitivity with respect to support position
3.1. General case

First, the first-order derivative of a specific nodal deflection with regard to the change of a simple
support position is derived. The force equilibrium equation of a loaded structure is
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[K[{u} = {P} (3)

where [K] is the global stiffness matrix of the structural system, which is assembled with the element stiffness
matrices. {u} is the unknown nodal deflection vector and {P} is the external load vector, which is com-
monly presumed unchangeable during the optimization. As is well known, the movement of a support
would change the boundary conditions of the system and consequently, lead to the system stiffness
redistribution. Differentiating Eq. (3) with respect to the support position yields

gy +m —g @

a
Then, by simple manipulations, we obtain
d{u} 1 d[K]
Bl S SR § ¢ i et
L U 5)

Premultiplying both sides of Eq. (5) by a virtual unit force vector {F i}T, in which, only the term cor-
responding to the ith deflection is equal to a unit and others are zeroes. Thus, the derivative of the ith

deflection % is obtained
do; 71 d[K] B ~rdK]
= (R[] S = () () (©)

where {u'} is the virtual nodal deflection vector caused by {F'}, and the symmetry of the global stiffness
matrix [K] has been used. Once the derivative of the global stiffness matrix of the system is found, the
derivative of the ith deflection can be calculated simply. Next, two kinds of structures will be studied in
sequence as to the movement of a simple support.

3.2. Beam element with elastic support

Let us first consider a uniform beam element of length L. with an elastic simple support in its span, as
shown in Fig. 1. The element is modeled as a classical Euler—Bernoulli beam so that the shear deformation
of the element is ignored. The in-span spring support with the stiffness & is located at @ and acts only in the
transverse direction. Therefore, the transverse displacement at the supported point can be approximated
with the nodal transverse displacements and slopes of the element

Uy
0,
%)
0,

5(61) = [Nl N2 N3 N4](a) . (7)

where N;_4 are the shape functions of the beam element, which should be independent of the boundary
conditions. The strain energy U in the spring support can be expressed in a quadratic form as

Fig. 1. Beam element with an elastic support attachment.
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N12 NN, NiN; NN, 1
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Sym. N} @ L 02

Then, the equivalent stiffness matrix of the in-span spring can be obtained

NZ NN, NiN; NNy
N7 NoNs  NaNg )
N} N3N,
Sym. N} @

As we know, the support shift would not alter the element stiffness. Then, the sensitivity of the ith nodal
deflection with respect to the spring support position can be obtained according to Eq. (6)

dé; 1 d[K]
L Y 1
Go - ey =g e} (10)
where {u.} and {u.} are the nodal deflection quantities of the related element caused by virtual and real
loadings, respectively. Usually, the Hermite functions are adopted for the Euler—Bernoulli beam element
(Zhu, 1998)

[K]s =k

2 3 2 3
N1:1—3(ﬁ) +2(i), sza—2Le(i) +Le(i)

n=3(2) -2(e) w=-n(e) +u(z)

Provided that the support is attached only at one of the two ends of the beam element, hence the
derivative of the equivalent stiffness matrix is achieved either

(11)

0k 00 0000
dKls| |k 0 0 0 d[K], 0000 12)
da |, (000 0% da|_, T |00 0k

0000 00 k0

Substituting the above expressions back into Eq. (10) gives the sensitivity of the ith nodal deflection,
respectively,

do;

da

. : dé;
o = —k(l)ll . 61 + 011 . U]), or da

:—k(Ué'gg-f—gé'Uz) (13)

a=L,

where v; and 0, are, respectively, the transverse displacement and the slope at End 1 of the beam element
caused by real loading, and v, and 6, are the corresponding items at End 2. The superscript i indicates that
the associated entries are caused by the virtual unit force.

Since the continuity of the nodal displacement and slope is always imposed between two neighboring
elements, it is recognizable that the sensitivities obtained with Eq. (13) are the same at an FE node from two
adjacent elements. Therefore, the subscripts symbolically indicating the element end in Eq. (13) will be
eliminated subsequently, and the nodal deflection quantities are just related to the point at which the
support is positioned.

For Euler-Bernoulli beam element, we can get the following relationship between the transverse
deflection and the slope (Zhu, 1998):

0=1 = (14)

dv
dx
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Therefore, the sensitivity of the nodal deflection with respect to the elastic support position becomes
do;
s

where v(a) and v'(a) represent the transverse displacement and its derivative of the beam evaluated at the
supported point by the real loading, respectively. v/(a) and v”(a) are the corresponding entries by the virtual

unit force. Eq. (15) indicates that the deflection sensitivity is proportional to the support stiffness. This
formula can be further simplified by introducing the spring force or support reaction force R

—k(v'(a)v'(a) + V" (a)v(a)) (15)

R = —kv(a) (16)
Therefore, the design sensitivity of the nodal deflection can be evaluated with
iii = R''(a) + Rv"(a) (17)

where R and R’ are the support reaction forces for real and virtual loadings, respectively. Eq. (17) shows
that the design sensitivity can be calculated directly using the results available from the FE analysis under
real and virtual loadings, respectively.

Once the stiffness of a spring increases to infinite, the elastic support will become a rigid one and the
transverse deflection of the supported point reduces to zero. In this situation, Eq. (17) is still valid to
evaluate the deflection sensitivity with regard to the movement of a rigid support without any difficulties.

After acquiring, respectively, the deflections and the associated derivatives with the support locating at
the nodes of the structural FE model, it is easy to estimate the deflection value with the support within the
element span by the Hermite interpolation technique:

0:(0)
d6,(0)

d(a)=[N, N, Ni N]- ;&) (18)
déi(Le)

da

where N, 4 are determined by Eq. (11).

Much as in the practical problem, it is not always the case that the optimal support position is exactly at
the FE node of the structure. Regularly, the optimal position of a support is located within the element
span. In this case, Eq. (18) can be used to estimate the optimal support position as will be described in the
illustrative Example 5.1.

3.3. Plate element with elastic support

In this subsection, the preceding work is extended to a thin plate element, i.e., the classical Kirchhoff
flexural element with an elastic support attachment in its region, seeing Fig. 2. Similarly, the transverse
displacement of the supported point along the z-axis can be expressed in terms of the element nodal
displacements and slopes

w(a,b) = [N] ) - {u}e (19)

where [N] is a row vector of shape functions of the rectangular plate element and {u}, is a column vector of
element nodal degrees of freedom

[INJ=[Ni Na Ny N» No Np N3y Ns Ns No Na Ny (20a)

{M}EZ[Wl 01 le wy Oo 0, ws 0O 9y3 wy Oy 0}*4]T (2Ob)
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Fig. 2. Thin plate element with an elastic support attachment.

Similar to the preceding derivations, the equivalent stiffness matrix of the elastic support is given as

N{ NiNa NiNg -+ NiNg NNy
Nle leNyl e leNx4 le]vy4
2
[K]S =k Nyl o Nlex4 Nley4 (21)
: : :2
Sym. Ny4 12x12
The sensitivity of the nodal deflection is obtained according to Eq. (6)
66 9K]
= ()" e} (22a)
65 0[K]
= ()" S e} (220)

Now let us take the standard shape functions of a rectangular thin plate element and utilize their
characteristics at the element corner vertices (Zhu, 1998). Assume that the support is attached at Vertex 1 of
the element, seeing Fig. 2, then one gets:
ONyy  ON,

dy  x

N = (23)

oN, 6N 1 ale 6Ny1
x = N = — = = 24
N = Ny ox 6y Ox dy 0 (24)

Other shape functions and their first derivatives are all nulls. After manipulations similar to those before,
the sensitivity of the ith deflection is given as

%
Oa

_ k(wq 0,1 + 9;1w1> (25a)

a=0, b=0
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0b | 4o, b-0
where wy, 0y, and 0,; are, respectively, the actual transverse displacement and slopes along the x and y axes
at Vertex 1 of the plate element. wi, ¢, and 0;1 denote the associated virtual entries.

Likewise, the design sensitivities of the support at other corner vertices of the element can be conducted.
Due to the compatibility of the nodal degrees of freedom between adjacent elements (though there exist
discontinuities for the normal slope across the common edges of adjacent elements), the resulting formulas
are the same as Eq. (25). Therefore, the subscripts indicating the element vertex in Eq. (25) will be sup-
pressed subsequently.

From the classical Kirchhoff flexural theory, there exist the following relations between the transverse
displacements and slopes

ow ow
= = — = — = —_—— 2
O, =w, 3 0, Wy o (26)
Moreover, the support reaction force R can be calculated with
R = —kw(a,b) (27)

By substituting Egs. (26) and (27) into Eq. (25), the deflection sensitivity with respect to a support
position can be obtained as:

aa(s,- = R'w (a,b) +w' (a,b)R (28a)
. g
6(3,- i i
ab = R W,y(él, b) + WAy(av b)R (28b)

where w,(a,b) and w,(a, b) indicate, respectively, the partial derivatives of w(a,b) with respect to the re-
lated axes of the Cartesian system, evaluated at the support point (a, b) under the real loading case. w' (a, b)
and wfy(a, b) correspond to the entries under virtual unit force. Similarly, as the elastic support becomes a
rigid one, Eq. (28) is still valid.

So far, it has been implied that a support shifts along the edges of the element. If the elementary edges
are not parallel to the global axes or the support moves along a specified direction, then the directional
derivative can be calculated by taking advantage of the gradient of the deflection

do; 09, 09;

i grad(d;) - ds = 3q S8 + ap 8 B (29)

where {cosa,cos f} are the directional cosines of the specified direction in the global Cartesian system.

4. Optimization procedure for support positions

After acquiring the deflection sensitivity, it is able to apply the results to support position optimization
of beam or plate structures. In this paper, a heuristic optimization algorithm, based on the ideas of the ESO
method (Xie and Steven, 1997), is employed to optimize the support positions gradually for minimizing the
maximal absolute deflection of a structure. This heuristic optimization algorithm, which is better suitable
for discrete design variable problems, consists of two steps. The first step is to find the most efficient support
on the basis of design sensitivity analysis. The second step is to shift the support to the nearby node so as to
decrease the maximal absolute deflection. Supports are assumed to move along the elementary edges with
the interval of elementary size. The search direction of a support is determined according to the design
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sensitivity. Once oscillation of the maximal absolute deflection occurs between two nodes with support
movements, the interpolation technique is used to estimate the optimal position within the element, since in
this case, the minimum of the maximal absolute deflection may take place with the support locating in the
element span.
Usually, the deflection change can be written linearly in terms of the position variation:
09,
AS; =~ — - Aa; 30
aaj J ( )
In order to reduce a specified deflection o; (>0) greater with less modification of the support positions, it
is desirable to shift the support with the maximal absolute value of the design sensitivity among all the
possibly movable supports

Max{ gjj , j=17...,n} (31)
and the move direction of the support is determined by
sign(Aqg;) = sign( 65,-) (32)
aa_,«

where Ag; is the move interval of the jth support position and sign(-) is the sign function.

To implement the optimization procedure, the FE method is used to calculate the structural deflections
numerically under real and virtual loadings. Then, the associated displacements (or support reaction forces)
and slopes at the supported points are accessible and the design sensitivities can be computed immediately.

5. Illustrative examples

To demonstrate the validity of the developed deflection sensitivity and the proposed optimization
algorithm, three numerical examples are employed to illustrate support position optimization for mini-
mizing the maximal absolute deflection of a structure. Despite their simplicities, no theoretical solutions
exist for their position optimizations. The program is developed based on the commercial software
SAMCEF®/Asef.

5.1. Simply supported beam

This example is devised to illustrate the deflection sensitivities and to visualize the optimization solu-
tions. A uniform beam of length L = 2 m is simply supported with two rigid supports. The cross-section is a
square with its side H/ = 0.1 m. The beam is discretized evenly with 10 elements as shown in Fig. 3. Let
Young’s modulus £ = 2.1 x 10" Pa and material density p = 7800 kg/m>. A concentrated load P, = 200
kN acts at the mid-span of the beam while two concentrated loads P; = 100 kN act at its two ends,
respectively. Additionally, the structural weight is also under consideration with the gravity acceleration
g = —9.81 m/s?. The two supports needs to be relocated symmetrically to minimize the maximal absolute
deflection of the beam. As to this simple structure, it can be anticipated that the maximal absolute
deflection would switch its position between the beam’s ends and its center with the movement of the
support position. Then, deflections only at those points are monitored. In order to testify the proposed
algorithm, the optimization process starts from two different initial designs with the supports at X/L = 1.0
and 0.0, respectively.

Fig. 4 shows the optimization histories of the beam deflections at both its end and mid-span with the
rigid support movement. The deflection shapes of the beam with different support positions are plotted in
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Fig. 3. Simply supported beam and its FE mesh.
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Fig. 4. Evolutionary histories of beam’s deflections.

Fig. 5. Table 1 lists the displacements, design sensitivities and the maximal absolute displacement of the
beam with different support positions. It is seen clearly that when the simple supports hold up the beam at
its ends, the mid-span of the beam deflects maximally. Conversely, when the supports hold up the beam at
its mid-span, both beam’s ends deflect maximally. The structural gravity brings about the maximal
deflections unequal in those two cases. As the support moves from X /L = 0.8 to 0.6, i.e., from Node 2 (10)
to Node 3 (9), the maximal absolute deflection switches its position from the beam mid-span to its ends. At

0.005 -
R X/L=1.0
0.000 _ LT P — S. ™ X/L=0.6523
N P I A
00055 N T xi=0s
‘\ I' N\ ,'
| B »
-0.010 R e
0015} .° N .
-0.020¢ ' IR s ' y X/L=00
0.00 0.50 1.00 150 2.00

Fig. 5. Deflection shapes of the beam for different support positions.
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Table 1
Beam deflections (m) and design sensitivities with different support positions
Support position X /L Beam deflections & (x1073) Support sensitivities (x1073)
At end At mid-span Max|o| At end At mid-span
1.0 0.0 —-19.139 19.139 28.718 86.082°
0.8 1.690 -6.130 6.130 -9.146 45.924*
0.6 —2.588 —-0.006 2.588 —-30.9532 17.233
0.4 -9.621 1.528 9.621 —-36.700 0.013
0.2 -16.197 0.765 16.197 —26.384* -5.733
0.0 -19.103 0.0 19.103

#Sensitivity of the maximal deflection.

Table 2
Maximal absolute deflections of the beam with different support stiffnesses
Support stiffness Maximal absolute deflection (mm)
100 EI/L? (2.1875% 107 N/m) 10.249
200 EI/L3 (4.375% 107 N/m) 5.661
Rigid 1.072

the same time, the sensitivity of the maximal absolute displacement alters its sign, seeing Table 1. With the
relevant displacements and the sensitivities, one can predict the switching point ¢* by imposing the equality
condition:

51 (a*) = 66(0*)

That is, with the Hermite interpolation technique within the element, one can get the following equation

51|Node2 56|Node2
oy dog
[Nl N2 ]\73 ]\/v4 }(a*) da [Node 2 — [Nl Nz N3 N4 ](m) da [Node 2
51|Node3 56|Node3
oy dog
da |Node 3 da [Node 3

This is a cubic equation about ¢* and can be solved simply with Cardano’s formulae. At last, the optimal
support position is achieved with X /L = 0.6523. The minimum of the maximal absolute deflection is 1.072
mm, only 5.6% of that with the supports locating at the beam’s ends. Substantial reduction of the maximal
deflection has been achieved with the optimal design of support positions.

Furthermore, it is found that the resulting solution is also valid for elastic supports with different
stiffnesses in this numerical example. This is because the reaction forces of the supports and the flexural
deformation of the beam are the same for all cases of supports of different stiffnesses. So are the design
sensitivities. The minimum values of the maximal absolute deflections of the beam with different support
stiffnesses are listed in Table 2 for comparison. The discrepancies are, in fact, produced by the deformations
of the elastic supports themselves.

5.2. Frame structure

A frame structure, loaded by four concentrated forces together with its self-weight, is shown in Fig. 6.
The original deflection of the frame without the lateral supports attachment takes the maximal value,
[Omax| = 211.63 mm, at its free tip. Now a pair of rigid supports is attached laterally at the nodes on the
lower chord to reduce its maximal deflection. The interval of the two simple supports remains 1 m apart
fixedly. Hence, « is the exclusive independent coordinate of the supports.
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Fig. 6. Frame structure with the applied loads and the additional lateral supports.
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Fig. 7. Variations of the maximal deflection and design sensitivity of the frame versus the support position.
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Fig. 8. Comparison of the deformation shapes of the frame structure.

The members of the frame structure are separated into two groups. The cross section of all the diagonal
members is full circle with diameter D = 20 mm. Other members are of tubular cross section with the outer
diameter D, = 80 mm and inner diameter D; = 60 mm. Young’s modulus is £ = 2.1 x 10'" Pa and material
density p = 7800 kg/m?. The optimization process starts from the initial design at @ = 0. Deflections of all
nodes on the upper chord are under control.

The variations of the maximal deflection of the frame and the design sensitivity are shown in Fig. 7,
respectively. The sensitivity is positive until @ = 6 m. Afterwards, when a = 7 m, i.e., the supports hold the
frame at C and C’, the sensitivity becomes negative. Meanwhile, the maximal absolute deflection, occurring
at point B, reaches minimum |Jy,,| = 5.37 mm, only 2.54% of that without the additional supports. Fig. 8
shows the final deformation of the frame compared with the original. Apparently, the frame deforms more
evenly with a pair of the supports locating at the optimal position.
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5.3. Simply supported rectangular plate

A rectangular plate, shown in Fig. 9, is loaded by a concentrated force of 2 kN at its central point C and
a uniformly distributed force of 2 kN/m? along the transverse direction. The plate is symmetrically sup-
ported with four elastic supports on its diagonals. The thickness of the plate is 1 cm uniformly. The plate is
discretized regularly with a mesh of 10x 10 quadrilateral elements. Young’s modulus is £ = 73.1 GPa and
Poisson ratio v = 0.3. The four elastic supports, with stiffness 10° N/m, will move along the diagonals of the
plate to minimize the plate deflection. The optimization process starts from the initial design at a/L = 0.

Fig. 10 shows the variation of the maximal deflection of the plate versus the support positions. The
numbers in the parentheses are the design sensitivities of the maximal deflection. When supports hold the

(b) L=2m

Fig. 9. Rectangular plate: (a) with applied forces; (b) with four simple supports.
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Fig. 10. Variation of the maximal deflection of the rectangular plate versus the support position.
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plate at its corners, i.e., /L = 0, the maximal absolute deflection is 0.1276 m, occurring at the mid-span of
the long edge. When the supports move from a/L = 0.2 to 0.3, the design sensitivity changes its value from
0.105 to —0.101. Thus, it is known that the optimal position is in this span and can be interpolated with the
obtained results. At the optimal design of the support positions a/L = 0.2791, the maximal absolute
deflection is 4.332x 1073 m, only 3.4% of the initial value, occurring at the corners and the center of the
plate. Obviously, the optimal design of support positions has reduced the plate deflection significantly.

6. Conclusions

Structural optimization often requires the evaluation of design sensitivities. In this paper, the closed-
form expressions for the deflection sensitivity of a beam or plate structure with respect to a support position
are first developed by the discrete method. Both elastic and rigid supports are taken into account. Fur-
thermore, based on the sensitivity analysis, a heuristic optimization algorithm, called the evolutionary shift
method, is presented for support position optimization with the objective of minimizing the maximal
deflection. To facilitate the convergence of the process, a polynomial interpolation technique is used to
evaluate the solution more accurately. Three numerical examples are utilized to demonstrate the validity of
the sensitivity formulation and the effectiveness of the proposed optimization method.

In practical problems, support positions are of great importance to provide additional rigidity and
improve the structural properties. Results of the examples show that the optimal design of support posi-
tions can reduce the structural deflection substantially without additional material.
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